Let S_n be the group of permutations of the n-element set [n]:=\{1 , 2, \dots, n\}, and let \pi\in S_n. Define the unitary U_\pi: (\mathbb{C}^2)^{\otimes n}\mapsto(\mathbb{C}^2)^{\otimes n} by
U_\pi(\ket{\varphi_1}\otimes\cdots\otimes\ket{\varphi_n})=\ket{\varphi_{\pi^{-1}(1)}}\otimes\cdots\otimes\ket{\varphi_{\pi^{-1}(n)}}
for all product states \ket{\varphi_1}\otimes\cdots\otimes\ket{\varphi_n} (and extended linearly to all of (\mathbb{C})^{\otimes{n}}). Denote by (i j) the transposition of i,j\in[n] for i\neq j, and define the subspace
Q_n=\{\ket{\Psi}\in(\mathbb{C})^2)^{\otimes{n}} \mid U_{(i j)}\ket{\Psi}=\ket{\Psi} \ \text{for all} \ i\neq j \}.
Let \vec{b}=b_1b_2\dots b_n \in\{0,1\}^n with b_i\in\{0,1\}, and let \ket{\vec{b}}\in(\mathbb{C}^2)^{\otimes n} be a n-qubit computational basis state. More explicitly, \ket{\vec{b}}=\bigotimes_{i=1}^{n}\ket{b_i}, describes the n-qubit state where each qubit is either in the state \ket{0} or \ket{1}. Now define the map
\omega: \{0,1\}^n\to \{0,1,\dots,n\} \ \ \text{given as} \ \ \omega(\vec{b})=\SUM{i=1}{n}b_i,
which simply counts the number of 1s appearing in the bit string \vec{b}, and call \omega(\vec{b}) the \emph{weight} of \vec{b}.
It was shown in a previous post that a basis of Q_n is given by the n+1 states of the form
\ket{\omega_k}=\frac{1}{\sqrt{\binom{n}{k}}}\SUM{ \ \ \vec{b} \ : \ \omega(\vec{b})=k}{}\ket{\bar{b}},
where each basis state \ket{\omega_k}, for k\in\{0,1,\dots, n\}, consists of an equally weighted superposition of the \binom{n}{k} computational basis states \ket{\vec{b}} with weight \omega(\vec{b})=k.
Consider the two dimensional subspace of Q_n which is spanned by the following two states:
\begin{align*} \ket{\overline{0}}&:=\ket{\omega_0}=\TENSOR{i=1}{n}\ket{0}=\ket{\vec{0}}, \\ \ket{\overline{1}}&:=\frac{1}{\sqrt{2^n-1}}\SUM{k=1}{n}\sqrt{\binom{n}{k}}\ket{\omega_k} \\ &=\frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq\vec{0}}{}\ket{\vec{b}}, \end{align*}
and note that \ip{\overline{0}}{\overline{1}}=0. Moreover, since each of \ket{\overline{0}} and \ket{\overline{1}} are given by superpositions of basis states of Q_n each state is left invariant under the action of U_{(ij)} for any transposition (ij)\in S_n. Therefore, the two dimensional subspace spanned by \ket{\overline{0}} and \ket{\overline{1}} is a valid subcode of Q_n.
Now, observe the action of the transversal Hadamard gate applied to each of the n qubits of the state \ket{\overline{0}}
\begin{align*} H^{\otimes n}\ket{\overline{0}}&= H^{\otimes n}\ket{\vec{0}} \\ &=\frac{1}{\sqrt{2^n}}\SUM{\vec{b}\in\{0,1\}^n}{}\ket{\vec{b}} \\ &=\frac{1}{\sqrt{2^n}}\ket{\vec{0}}+\frac{1}{\sqrt{2^n}}\SUM{\vec{b}\neq \vec{0}}{}\ket{\vec{b}} \\ =&\frac{1}{\sqrt{2^n}}\ket{\vec{0}}+\frac{\sqrt{2^n-1}}{\sqrt{2^n}}\left(\frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq \vec{0}}{}\ket{\vec{b}}\right) \\ &=\sqrt{2^{-n}}\ket{\overline{0}}+\sqrt{1-2^{-n}}\ket{\overline{1}}. \\ \end{align*}
Instead, observe the action of H^{\otimes n} on the state \ket{\overline{1}}:
\begin{align*} H^{\otimes n}\ket{\overline{1}}&= \frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq\vec{0}}{}H^{\otimes n}\ket{\vec{b}} \\ &= \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\in\{0,1\}^n}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{0}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \frac{2^n-1}{\sqrt{2^n-1}\sqrt{2^n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{c}\neq\vec{0}}{}\left(\SUM{ \ \vec{b}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\right)\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n}}\frac{1}{\sqrt{2^n-1}}\SUM{\vec{c}\neq\vec{0}}{}\left(-1\right)\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\overline{0}} - \sqrt{2^{-n}}\ket{\overline{1}}. \\ \end{align*}
Thus, in summary the action of H^{\otimes n} on \ket{\overline{0}} and \ket{\overline{1}} is given by:
\begin{align*} \ket{\overline{0}}&\overset{H^{\otimes n}}\mapsto \sqrt{2^{-n}}\ket{\overline{0}}+\sqrt{1-2^{-n}}\ket{\overline{1}} \\ \ket{\overline{1}}&\overset{H^{\otimes n}}\mapsto \sqrt{1-2^{-n}}\ket{\overline{0}}-\sqrt{2^{-n}}\ket{\overline{1}}, \end{align*}
which is given by the logical operation \overline{U} given by the matrix expressed in the logical basis as
\overline{U}=\begin{pmatrix} \sqrt{2^{-n}} & \sqrt{1-2^{-n}}\\ \sqrt{1-2^{-n}}&-\sqrt{2^{-n}} \\ \end{pmatrix}.
Transitioning now into the setting of CSS codes, let H_1, H_2 be parity check matrices such that Q=CSS(H_1,H_2) is a [[n,k,d]]-CSS code. The matrix of stabilizers for this code is given by the binary symplectic matrix
S= \left(\begin{array}{c | c} 0&H_1 \\ H_2 & 0 \end{array}\right)
The action of conjugation by a transversal Hadamard applied to the symplectic matrix S transforms it to
S'=H^{\otimes n}SH^{\otimes n \dagger} \left(\begin{array}{c | c} 0&H_2 \\ H_1 & 0 \end{array}\right)
Suppose that H^{\otimes n} preserves the code space so that H^{\otimes n}Q=Q. This action must send codewords of Q to codewords of Q and only permute the set of stabilizers of the code. Since H^{\otimes n} effectively turns X-type generators into Z-type generators, then it must be the case that any row r_i of H_1 lies in the span of the rows of H_2, and likewise that any row r'_i of H_2 lies in the span of the rows of H_1. That is, Row(H_1)\subseteq Row(H_2) and Row(H_2)\subseteq Row(H_1), which is equivalent to the condition that
Row(H_1)=Row(H_2),
where row(H_i) represents the space spanned by rows of H_i.
Now, suppose instead that Row(H1)=Row(H_2). This implies that a row of H_1 (or H_2) can be expressed in terms of the rows of H_2 (or H_1). Then after the action of a transversal Hadamard H^{\otimes n }, each X-type (or Z-type) stabilizer will be transformed into a Z-type (X-type) stabilizer that can be generated by the original set of Z-type (X-type) stabilizers. Hence, the action of H^{\otimes n} preserves the codespace: H^{\otimes n}Q=Q.
Therefore, the condition that Row(H_1)=Row(H_2) is both a necessary and sufficient condition for H^{\otimes n}Q=Q. If H_1=H_2, then trivially Row(H_1)=Row(H_2) so that H^{\otimes n}Q=Q.
Suppose that H=H_1=H_2 and n is odd. Let Row(H) be the space spanned by the rows of H, and assume that |v|=\sum_{j=1}^{n}=0 \ (mod \ 2) for every v\in Row(H). Note that this implies that \vec{1}\in Row(H)^\perp\backslash Row(H), where \vec{1}=(1,\dots,1) (n times).
Therefore, the operators given by X^{\otimes n} and Z^{\otimes n} are in the normalizer of the stabilizer for Q, because each stabilizer will commute with X^{\otimes n} and Z^{\otimes n} as the size of the intersection of the supports of any stabilizer with either X^{\otimes n} and Z^{\otimes n} is even. Moreover, X^{\otimes n} and Z^{\otimes n} are not in the stabilizer since every stabilizer acts nontrivially only on an even number of physical qubits whereas X^{\otimes n} and Z^{\otimes n} acts on all n qubits (where n is odd). Hence, the operators X^{\otimes n} and Z^{\otimes n} yield a logical operation on Q on some encoded qubit. Without loss of generality associate these logical operations to act on the first encoded qubit:
\begin{align*} \overline{X}_1&=X^{\otimes n} \\ \overline{Z}_2&=Z^{\otimes n} \end{align*}
Consider then the logical basis states for the 1st encoded qubit: \ket{\overline{0}}_1 and \ket{\overline{1}}_1. In this basis, these states can be expressed as:
\begin{align*} \ket{\overline{0}}_1\bra{\overline{0}}_1&=\frac{I+\overline{Z}}{2} \\ \ket{\overline{1}}_1\bra{\overline{1}}_1&=\frac{I-\overline{Z}}{2}. \end{align*}
Then since HXH^\dagger=Z and HZH\dagger=X, this implies that H^{\otimes n}\overline{X}H^{\otimes n \dagger}=\overline{Z} and H^{\otimes n}\overline{Z}H^{\otimes n \dagger}=\overline{X}. Therefore,
\begin{align*} H^{\otimes n}\left(\frac{I+\overline{Z}}{2}\right)H^{\otimes n \dagger}&=\frac{I+\overline{X}}{2}=\ket{\overline{+}}_1\bra{\overline{+}}_1 \\ H^{\otimes n}\left(\frac{I-\overline{Z}}{2}\right)H^{\otimes n \dagger}&=\frac{I-\overline{X}}{2}=\ket{\overline{-}}_1\bra{\overline{-}}_1, \end{align*}
where \ket{\overline{+}}=\frac{1}{\sqrt{2}}(\ket{\overline{0}}_1+\ket{\overline{1}}_1) and \ket{\overline{-}}=\frac{1}{\sqrt{2}}(\ket{\overline{0}}_1-\ket{\overline{1}}_1). Hence, the action of H^{\otimes n} on the logical computational basis of the first encoded qubit is given by a logical Hadamard on that encoded qubit:
\begin{align*} \ket{\overline{0}}&\overset{\overline{H}}\mapsto\ket{\overline{+}},\\ \ket{\overline{1}}&\overset{\overline{H}}\mapsto\ket{\overline{-}}. \end{align*}
In regards to the action of H^{\otimes n} on the rest of the k-1 encoded qubits, recall that H^{\otimes n} preserves the code space. Therefore, H^{\otimes n} merely permutes the individual stabilizers. More generally, H^{\otimes n} is in the Clifford group C_n. Thus, it must be the case that H^{\otimes n}=\overline{H}\otimes \overline{C}, where \overline{C} is some logical Clifford operation since H^{\otimes n} is a Clifford operation.
U_\pi(\ket{\varphi_1}\otimes\cdots\otimes\ket{\varphi_n})=\ket{\varphi_{\pi^{-1}(1)}}\otimes\cdots\otimes\ket{\varphi_{\pi^{-1}(n)}}
for all product states \ket{\varphi_1}\otimes\cdots\otimes\ket{\varphi_n} (and extended linearly to all of (\mathbb{C})^{\otimes{n}}). Denote by (i j) the transposition of i,j\in[n] for i\neq j, and define the subspace
Q_n=\{\ket{\Psi}\in(\mathbb{C})^2)^{\otimes{n}} \mid U_{(i j)}\ket{\Psi}=\ket{\Psi} \ \text{for all} \ i\neq j \}.
Let \vec{b}=b_1b_2\dots b_n \in\{0,1\}^n with b_i\in\{0,1\}, and let \ket{\vec{b}}\in(\mathbb{C}^2)^{\otimes n} be a n-qubit computational basis state. More explicitly, \ket{\vec{b}}=\bigotimes_{i=1}^{n}\ket{b_i}, describes the n-qubit state where each qubit is either in the state \ket{0} or \ket{1}. Now define the map
\omega: \{0,1\}^n\to \{0,1,\dots,n\} \ \ \text{given as} \ \ \omega(\vec{b})=\SUM{i=1}{n}b_i,
which simply counts the number of 1s appearing in the bit string \vec{b}, and call \omega(\vec{b}) the \emph{weight} of \vec{b}.
It was shown in a previous post that a basis of Q_n is given by the n+1 states of the form
\ket{\omega_k}=\frac{1}{\sqrt{\binom{n}{k}}}\SUM{ \ \ \vec{b} \ : \ \omega(\vec{b})=k}{}\ket{\bar{b}},
where each basis state \ket{\omega_k}, for k\in\{0,1,\dots, n\}, consists of an equally weighted superposition of the \binom{n}{k} computational basis states \ket{\vec{b}} with weight \omega(\vec{b})=k.
Consider the two dimensional subspace of Q_n which is spanned by the following two states:
\begin{align*} \ket{\overline{0}}&:=\ket{\omega_0}=\TENSOR{i=1}{n}\ket{0}=\ket{\vec{0}}, \\ \ket{\overline{1}}&:=\frac{1}{\sqrt{2^n-1}}\SUM{k=1}{n}\sqrt{\binom{n}{k}}\ket{\omega_k} \\ &=\frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq\vec{0}}{}\ket{\vec{b}}, \end{align*}
and note that \ip{\overline{0}}{\overline{1}}=0. Moreover, since each of \ket{\overline{0}} and \ket{\overline{1}} are given by superpositions of basis states of Q_n each state is left invariant under the action of U_{(ij)} for any transposition (ij)\in S_n. Therefore, the two dimensional subspace spanned by \ket{\overline{0}} and \ket{\overline{1}} is a valid subcode of Q_n.
Now, observe the action of the transversal Hadamard gate applied to each of the n qubits of the state \ket{\overline{0}}
\begin{align*} H^{\otimes n}\ket{\overline{0}}&= H^{\otimes n}\ket{\vec{0}} \\ &=\frac{1}{\sqrt{2^n}}\SUM{\vec{b}\in\{0,1\}^n}{}\ket{\vec{b}} \\ &=\frac{1}{\sqrt{2^n}}\ket{\vec{0}}+\frac{1}{\sqrt{2^n}}\SUM{\vec{b}\neq \vec{0}}{}\ket{\vec{b}} \\ =&\frac{1}{\sqrt{2^n}}\ket{\vec{0}}+\frac{\sqrt{2^n-1}}{\sqrt{2^n}}\left(\frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq \vec{0}}{}\ket{\vec{b}}\right) \\ &=\sqrt{2^{-n}}\ket{\overline{0}}+\sqrt{1-2^{-n}}\ket{\overline{1}}. \\ \end{align*}
Instead, observe the action of H^{\otimes n} on the state \ket{\overline{1}}:
\begin{align*} H^{\otimes n}\ket{\overline{1}}&= \frac{1}{\sqrt{2^n-1}}\SUM{\vec{b}\neq\vec{0}}{}H^{\otimes n}\ket{\vec{b}} \\ &= \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\in\{0,1\}^n}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{0}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \frac{2^n-1}{\sqrt{2^n-1}\sqrt{2^n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{b}\neq\vec{0}}{}\SUM{ \ \vec{c}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n-1}\sqrt{2^n}}\SUM{\vec{c}\neq\vec{0}}{}\left(\SUM{ \ \vec{b}\neq\vec{0}}{}(-1)^{\vec{b}\cdot\vec{c}}\right)\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\vec{0}} + \frac{1}{\sqrt{2^n}}\frac{1}{\sqrt{2^n-1}}\SUM{\vec{c}\neq\vec{0}}{}\left(-1\right)\ket{\vec{c}} \\ &= \sqrt{1-2^{-n}}\ket{\overline{0}} - \sqrt{2^{-n}}\ket{\overline{1}}. \\ \end{align*}
Thus, in summary the action of H^{\otimes n} on \ket{\overline{0}} and \ket{\overline{1}} is given by:
\begin{align*} \ket{\overline{0}}&\overset{H^{\otimes n}}\mapsto \sqrt{2^{-n}}\ket{\overline{0}}+\sqrt{1-2^{-n}}\ket{\overline{1}} \\ \ket{\overline{1}}&\overset{H^{\otimes n}}\mapsto \sqrt{1-2^{-n}}\ket{\overline{0}}-\sqrt{2^{-n}}\ket{\overline{1}}, \end{align*}
which is given by the logical operation \overline{U} given by the matrix expressed in the logical basis as
\overline{U}=\begin{pmatrix} \sqrt{2^{-n}} & \sqrt{1-2^{-n}}\\ \sqrt{1-2^{-n}}&-\sqrt{2^{-n}} \\ \end{pmatrix}.
Transitioning now into the setting of CSS codes, let H_1, H_2 be parity check matrices such that Q=CSS(H_1,H_2) is a [[n,k,d]]-CSS code. The matrix of stabilizers for this code is given by the binary symplectic matrix
S= \left(\begin{array}{c | c} 0&H_1 \\ H_2 & 0 \end{array}\right)
The action of conjugation by a transversal Hadamard applied to the symplectic matrix S transforms it to
S'=H^{\otimes n}SH^{\otimes n \dagger} \left(\begin{array}{c | c} 0&H_2 \\ H_1 & 0 \end{array}\right)
Suppose that H^{\otimes n} preserves the code space so that H^{\otimes n}Q=Q. This action must send codewords of Q to codewords of Q and only permute the set of stabilizers of the code. Since H^{\otimes n} effectively turns X-type generators into Z-type generators, then it must be the case that any row r_i of H_1 lies in the span of the rows of H_2, and likewise that any row r'_i of H_2 lies in the span of the rows of H_1. That is, Row(H_1)\subseteq Row(H_2) and Row(H_2)\subseteq Row(H_1), which is equivalent to the condition that
Row(H_1)=Row(H_2),
where row(H_i) represents the space spanned by rows of H_i.
Now, suppose instead that Row(H1)=Row(H_2). This implies that a row of H_1 (or H_2) can be expressed in terms of the rows of H_2 (or H_1). Then after the action of a transversal Hadamard H^{\otimes n }, each X-type (or Z-type) stabilizer will be transformed into a Z-type (X-type) stabilizer that can be generated by the original set of Z-type (X-type) stabilizers. Hence, the action of H^{\otimes n} preserves the codespace: H^{\otimes n}Q=Q.
Therefore, the condition that Row(H_1)=Row(H_2) is both a necessary and sufficient condition for H^{\otimes n}Q=Q. If H_1=H_2, then trivially Row(H_1)=Row(H_2) so that H^{\otimes n}Q=Q.
Suppose that H=H_1=H_2 and n is odd. Let Row(H) be the space spanned by the rows of H, and assume that |v|=\sum_{j=1}^{n}=0 \ (mod \ 2) for every v\in Row(H). Note that this implies that \vec{1}\in Row(H)^\perp\backslash Row(H), where \vec{1}=(1,\dots,1) (n times).
Therefore, the operators given by X^{\otimes n} and Z^{\otimes n} are in the normalizer of the stabilizer for Q, because each stabilizer will commute with X^{\otimes n} and Z^{\otimes n} as the size of the intersection of the supports of any stabilizer with either X^{\otimes n} and Z^{\otimes n} is even. Moreover, X^{\otimes n} and Z^{\otimes n} are not in the stabilizer since every stabilizer acts nontrivially only on an even number of physical qubits whereas X^{\otimes n} and Z^{\otimes n} acts on all n qubits (where n is odd). Hence, the operators X^{\otimes n} and Z^{\otimes n} yield a logical operation on Q on some encoded qubit. Without loss of generality associate these logical operations to act on the first encoded qubit:
\begin{align*} \overline{X}_1&=X^{\otimes n} \\ \overline{Z}_2&=Z^{\otimes n} \end{align*}
Consider then the logical basis states for the 1st encoded qubit: \ket{\overline{0}}_1 and \ket{\overline{1}}_1. In this basis, these states can be expressed as:
\begin{align*} \ket{\overline{0}}_1\bra{\overline{0}}_1&=\frac{I+\overline{Z}}{2} \\ \ket{\overline{1}}_1\bra{\overline{1}}_1&=\frac{I-\overline{Z}}{2}. \end{align*}
Then since HXH^\dagger=Z and HZH\dagger=X, this implies that H^{\otimes n}\overline{X}H^{\otimes n \dagger}=\overline{Z} and H^{\otimes n}\overline{Z}H^{\otimes n \dagger}=\overline{X}. Therefore,
\begin{align*} H^{\otimes n}\left(\frac{I+\overline{Z}}{2}\right)H^{\otimes n \dagger}&=\frac{I+\overline{X}}{2}=\ket{\overline{+}}_1\bra{\overline{+}}_1 \\ H^{\otimes n}\left(\frac{I-\overline{Z}}{2}\right)H^{\otimes n \dagger}&=\frac{I-\overline{X}}{2}=\ket{\overline{-}}_1\bra{\overline{-}}_1, \end{align*}
where \ket{\overline{+}}=\frac{1}{\sqrt{2}}(\ket{\overline{0}}_1+\ket{\overline{1}}_1) and \ket{\overline{-}}=\frac{1}{\sqrt{2}}(\ket{\overline{0}}_1-\ket{\overline{1}}_1). Hence, the action of H^{\otimes n} on the logical computational basis of the first encoded qubit is given by a logical Hadamard on that encoded qubit:
\begin{align*} \ket{\overline{0}}&\overset{\overline{H}}\mapsto\ket{\overline{+}},\\ \ket{\overline{1}}&\overset{\overline{H}}\mapsto\ket{\overline{-}}. \end{align*}
In regards to the action of H^{\otimes n} on the rest of the k-1 encoded qubits, recall that H^{\otimes n} preserves the code space. Therefore, H^{\otimes n} merely permutes the individual stabilizers. More generally, H^{\otimes n} is in the Clifford group C_n. Thus, it must be the case that H^{\otimes n}=\overline{H}\otimes \overline{C}, where \overline{C} is some logical Clifford operation since H^{\otimes n} is a Clifford operation.