Processing math: 100%

Entangled vs. Seperable states

If possible, each two-qubit state given below will be expressed as a product of two one-qubit states. Otherwise, it will be shown that such a factorization is impossible (in this case, the qubits are said to be entangled).


Case (i):
\ket{\psi}=\frac{1}{2}\ket{00}+\frac{i}{2}\ket{01}-\frac{1}{2}\ket{10}-\frac{i}{2}\ket{11}


Consider the one-qubit states \ket{\phi_1}=\frac{1}{\sqrt2}\ket{0}-\frac{1}{\sqrt2}\ket{1} and \ket{\phi_2}=\frac{1}{\sqrt2}\ket{0}+\frac{i}{\sqrt2}\ket{1}. Then expanding the tensor product of the two states \ket{\phi_1}\otimes\ket{\phi_2}=\ket{\phi_1}\ket{\phi_2} yields:
\begin{array}{rcl}\ket{\phi_1}\ket{\phi_2}&=&(\frac{1}{\sqrt2}\ket{0}-\frac{1}{\sqrt2}\ket{1})(\frac{1}{\sqrt2}\ket{0}+\frac{i}{\sqrt2}\ket{1}) \\ \\ &=&\frac{1}{\sqrt2}\frac{1}{\sqrt2}\ket{0}\ket{0}+\frac{1}{\sqrt2}\frac{i}{\sqrt2}\ket{0}\ket{1}-\frac{1}{\sqrt2}\frac{1}{\sqrt2}\ket{1}\ket{0}-\frac{1}{\sqrt2}\frac{i}{\sqrt2}\ket{1}\ket{1} \\ \\ &=&\frac{1}{2}\ket{00}+\frac{i}{2}\ket{01}-\frac{1}{2}\ket{10}-\frac{i}{2}\ket{11}. \end{array}
Thus, \ket{\psi}=\ket{\phi_1}\ket{\phi_2} can be expressed as the tensor product of two one-qubit states and is therefore a separable state.


Case (ii):

\ket{\psi}=\frac{1}{2}\ket{00}+\frac{1}{2}\ket{01}+\frac{1}{2}\ket{10}-\frac{1}{2}\ket{11}

It will be shown that \ket{\psi} is an entangled state. For the sake of contradiction, suppose that \ket{\psi} can be written as the tensor product of two one-qubit states expressed in their general form \ket{\phi_1}=\alpha\ket{0}+\beta\ket{1} and \ket{\phi_2}=\alpha'\ket{0}+\beta'\ket{1}, where \alpha,\beta,\alpha',\beta'\in\mathbb{C}. Then,
\begin{array}{rcl} \ket{\psi}&=&\ket{\phi_1}\ket{\phi_2} \\ \\ &=&(\alpha\ket{0}+\beta\ket{1})(\alpha'\ket{0}+\beta'\ket{1}) \\ \\ &=&\alpha\alpha'\ket{00}+\alpha\beta'\ket{01}+\beta\alpha'\ket{10}+\beta\beta'\ket{11} \end{array}
Now compare these amplitudes to those actually provided in \ket{\psi}:
\alpha\alpha'=\frac{1}{2}, \alpha\beta'=\frac{1}{2}, \beta\beta'=\frac{1}{2}, \beta\beta'=\frac{-1}{2}.
Since these products are all nonzero numbers and \alpha,\beta,\alpha',\beta'\in\mathbb{C}, this implies that \alpha,\beta,\alpha',\beta'\neq 0. Consider the following relationships which must also hold:
\begin{array}{rl} &\alpha\alpha'-\alpha\beta'=\frac{1}{2}-\frac{1}{2}=0\\ \implies&\alpha(\alpha'-\beta')=0 \\ \implies&\alpha'=\beta', \end{array}
and likewise
\begin{array}{rl} &\beta\alpha'+\beta\beta'=\frac{1}{2}+\frac{-1}{2}=0\\ \implies&\beta(\alpha'+\beta')=0 \\ \implies&\alpha'=-\beta', \end{array}
but then \beta'=-\beta' implies that \beta'=0 which contradicts the fact that \beta'\neq0. Therefore, the two-qubit state \ket{\psi} cannot be expressed as the tensor product of two one-qubit states, and must be entangled.


Case (iii):
\ket{\psi}=\frac{9}{25}\ket{00}+\frac{12}{25}\ket{01}+\frac{12}{25}\ket{10}-\frac{16}{25}\ket{11}


Consider the two identical one-qubit states \ket{\phi_1}=\ket{\phi_2}=\frac{3}{5}\ket{0}+\frac{4}{5}\ket{1}. Then expanding the tensor product of the two states \ket{\phi_1}\otimes\ket{\phi_2}=\ket{\phi_1}\ket{\phi_2} yields:
\begin{array}{rcl}\ket{\phi_1}\ket{\phi_2}&=&(\frac{3}{5}\ket{0}+\frac{4}{5}\ket{1})(\frac{3}{5}\ket{0}+\frac{4}{5}\ket{1}) \\ \\ &=&\frac{3}{5}\frac{3}{5}\ket{0}\ket{0}+\frac{3}{5}\frac{4}{5}\ket{0}\ket{1}+\frac{4}{5}\frac{3}{5}\ket{1}\ket{0}+\frac{4}{5}\frac{4}{5}\ket{1}\ket{1} \\ \\ &=&\frac{9}{25}\ket{00}+\frac{12}{25}\ket{01}+\frac{2}{25}\ket{10}+\frac{16}{25}\ket{11}. \end{array}
Thus, \ket{\psi}=\ket{\phi_1}\ket{\phi_2} can be expressed as the tensor product of two one-qubit states and is therefore a separable state.